Simulated full-waveform LiDAR compared to Riegl VZ-400 terrestrial laser scans

نویسندگان

  • Angela M. Kim
  • Richard C. Olsen
  • Martin Béland
چکیده

A 3-D Monte Carlo ray-tracing simulation of LiDAR propagation models the reflection, transmission and absorption interactions of laser energy with materials in a simulated scene. In this presentation, a model scene consisting of a single Victorian Boxwood (Pittosporum undulatum) tree is generated by the high-fidelity tree voxel model VoxLAD using high-spatial resolution point cloud data from a Riegl VZ-400 terrestrial laser scanner. The VoxLAD model uses terrestrial LiDAR scanner data to determine Leaf Area Density (LAD) measurements for small volume voxels (20 cm sides) of a single tree canopy. VoxLAD is also used in a non-traditional fashion in this case to generate a voxel model of wood density. Information from the VoxLAD model is used within the LiDAR simulation to determine the probability of LiDAR energy interacting with materials at a given voxel location. The LiDAR simulation is defined to replicate the scanning arrangement of the Riegl VZ-400; the resulting simulated full-waveform LiDAR signals compare favorably to those obtained with the Riegl VZ-400 terrestrial laser scanner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature Compensation for Radiometric Correction of Terrestrial LiDAR Intensity Data

Correction of terrestrial Light Detection and Ranging (LiDAR) intensity data has been increasingly studied in recent years. The purpose is to obtain additional insight into the scanned environment that is not available from the geometric information alone. Radiometric correction, as the name implies, corrects the received intensity to standard reflectance values in the range of (0, 1). This cor...

متن کامل

Radiometric Correction of Terrestrial Lidar Data for Mapping of Harvest Residues Density

In precision agriculture detailed geoinformation on plant and soil properties plays an important role. Laser scanning already has been used to describe in-field variations of plant growth in 3D and over time and can serve as valuable complementary topographic data set for remote sensing, such as deriving soil properties from hyperspectral sensors. In this study full-waveform laser scanning data...

متن کامل

Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR

In recent years, LIght Detection And Ranging (LiDAR) and especially Terrestrial Laser Scanning (TLS) systems have shown the potential to revolutionise forest structural characterisation by providing unprecedented 3D data. However, manned Airborne Laser Scanning (ALS) requires costly campaigns and produces relatively low point density, while TLS is labour intense and time demanding. Unmanned Aer...

متن کامل

Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrum...

متن کامل

Vehicle Based Waveform Laser Scanning in a Coastal Environment

This paper presents the results of an investigation into the use of a waveform lidar system from a ground based vehicle. Data was collected using a Riegl LMS Q560 laser scanner mounted on the roof of a Landrover driven along a 7 km stretch of coastline at Filey Bay, North Yorkshire, UK. An IMU and differential GPS unit, part of IGI’s AeroControl system, were used to provide measurement of senso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016